NEFT YO‘LDOSH GAZLARINI KATALITIK PIROLIZLAB NANOUGLEROD OLISH REAKSIYASI TEZLIGIGA TURLI OMILLARNING TA’SIRI

Authors

  • Turayev B Sh.Rashidov nomidagi Samarqand Davlat universiteti akademik litseyi tabiiy fanlar kafedrasi Kimyo fani o’qituvchilari
  • Kungiratov K Sh.Rashidov nomidagi Samarqand Davlat universiteti akademik litseyi tabiiy fanlar kafedrasi Kimyo fani o’qituvchilari
  • Abduraximova M Sh.Rashidov nomidagi Samarqand Davlat universiteti akademik litseyi tabiiy fanlar kafedrasi Kimyo fani o’qituvchilari
  • Fayzullaev Normurot Ibodullayevich Sharof Rashidov nomidagi Samarqand davlat universiteti t.f.d., professor Polimerlar kimyosi va kimyoviy texnologiya kafedrasi mudiri fayzullayev72@inbox.ru

Keywords:

Neft yo‘ldosh gazlari, katalizator, jarayonni o‘tkazish haroratlari, nanouglerod, chiziqli tezlik, tekstur xarakteristika, mahsulot unumi.

Abstract

Neft yo‘ldosh gazlarini katalitik pirolizlab nanouglerod olish reaksiyasida 14%Ni·4%Co·7%Fe·6%Cu/YUKS va 14%Ni·4%Co·6%Fe·4%Cu·2%Mo/YUKS tarkibli katalizatorlar ishtirokida nanouglerodli qatlamlar hosil bo‘lish tezligiga metanni katalitik pirolizlash jarayonining turli parametrlarining ta’siri o‘rganilgan. Katalizatorlar ishtirokida nanouglerod hosil bo‘lishiga harorat ta’siri bo‘yicha tajribalar natijalariga ko‘ra, katalizator 1 soat ishlashi davomida 500, 550 va 650℃ haroratlarda mos ravishda 7,2; 17,5; 22.2 g/gkat ni tashkil etgan. 2,5 soat davomida 9 g massali katalizatorlar ishtirokida, qatlamining 0,8 sm atrofida qalinlikdagi miqdorlarida, metanning chiziqli tezligi 250 sm/daq  bo‘lganda turli haroratda nanouglerodning hosil bo‘lishi o‘rganilganda 650℃ da 14%Ni·4%Co·6%Fe·4%Cu·2%Mo/YUKS da 598 g/soat nanouglerod hosil bo‘lishi aniqlangan.

References

[1] Kuvshinov G. G., Popov M. V., Solovev E. A. i dr. // Evropeyskiy issledovatel. 2012. Vыp. 36, No 12-1. S. 2102.

[2] Puchkov L. A., Vorobev B. M., Vasyuchkov YU. F. // Gornыy informatsionno-analitiche-skiy byulleten. 2006. No 1. S. 210.

[3] Kuvshinov G. G., Mogilnykh Yu. I., Kuvshinov D. G. et al. // Proceedings of the 11-th World Hydrogen Energy Conf., Stuttgart (Germany), 1996. P. 2.

[4] Bannov A. G., Kuvshinov G. G. // Materialovedenie. 2011. No 10. C. 47.

[5] Krutskiy YU. L., Bannov A. G., Sokolov V. V. i dr. // Ros. nanotexnologii. 2013. No 3-4. S. 22

[6] Reshetenko T. V., Avdeeva L. B., Ismagilov Z. R. et al. // Applied Catalysis A: General 2003. Vol. 247. P. 51.

[7] Kuvshinov G. G., CHukanov I. S., Krutsky Y. L. et al. // Carbon. 2009. Vol. 47. R. 215.

[8] Handbook of Nanophysics. Clusters and Fullerenes, edited by Klaus D. Sattler (CRC Press, Taylor and Francis Group, LLC, 2010).

[9] Graphene. Synthesis and Applications, edited by Wongbong Choi and Jo-won Lee (CRC Press, Taylor and Francis Group, LLC, 2012).

[10] B.S. Murty, P. Shankar, Badlev Raj, B.B. Rath, James Murday, Textbook of Nanoscience and Nanotechnology ( Springer University Press, India, 2013).

[11] Springer Handbook of Nanomaterials, edited by Robert Vajtai (Springer-Verlag, Berlin,2013).

[12] Carbon Nanomaterials, Second Edition, edited by Yuri Gogotsi and Volker Presser (CRC Press, Taylor and Francis Group, LLC, 2014).

[13] Debaprasad Das, Hafizu Rahaman, Carbon Nanotubes and Graphene Nanoribbon Interconnects (CRC Press, Taylor and Francis Group, LLC, 2015).

[14] Carbon Nanomaterials Sourcebook, Vol. 1. Graphene, Fullerenes, Nanotubes, and Nanodiamonds, edited by Klaus D. Sattler (CRC Press, Taylor and Francis Group, LLC, 2016).

[15] Structure and Multiscale Mechanics of Carbon Nanomaterials, edited by Oscar Paris, CISM International Centre for Mechanical Sciences 563 (Springer, Wien, CISM, Udine, 2016).

[16] R. Sure, R. Tonner, P. Schwerdtfeger, A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory // J. Comp. Chem. 36 (2015) 88.

Downloads

Published

2024-10-10